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Abstract. This paper is the third in a series directed towards a projection-based solution 
to the Clebsch-Gordan multiplicity problem for semisimple (compact) Lie groups. In this 
paper it is shown that the projected states for the Clebsch-Gordan problem approach 
orthogonality in the classical limit of large quantum numbers in a manner analogous to 
that of Elliott’s well known solution to the U(3) 2 O(3) state labelling problem. 

1. Introduction 

In two previous papers (Edwards and Gould 1986a, b, hereafter referred to as I and 
I1 respectively) a projection-based solution to the Clebsch-Gordan problem for a 
general semisimple (compact) Lie group was proposed. The principal motivation for 
this work was provided by Elliott’s approach (Elliott 1958, Elliott and Harvey 1962) 
to the O(3) c U(3) state labelling problem. In this latter model the choice of intrinsic 
states, from which projection is done, is physically and mathematically natural, directly 
related to the fact that, in the appropriate realisation of the embedding of O(3) in 
U(3) and choice of Cartan subalgebra of U(3), a highest weight vector of SU(3) is 
cyclic under the action of SO(3) for the irreducible representation of SU(3) in which 
it lies. These desirable features of the O(3) c U(3) multiplicity problem-the existence, 
for a given choice of Cartan subalgebra, of mathematically distinguished cyclic vectors 
for the representations to be reduced, and the availability of a natural choice of intrinsic 
states from which to project-are shared by the Clebsch-Gordan problem for a semi- 
simple Lie group G as demonstrated in I. The details of these results (and additional 
properties) are discussed in detail in I and 11. 

The approach of I and I1 to the Clebsch-Gordan problem suffers from the drawback, 
which is typical of projection methods, that the projected states are non-orthogonal. 
It is our aim in this paper to demonstrate that the semisimple (compact) Lie group 
Clebsch-Gordan problem possesses the desirable feature that the projected states 
approach orthogonality in a suitable limit of large quantum numbers. Our motivation 
for this work is again provided by Elliott’s (1958) solution to the O(3) c U(3) state 
labelling problem in which the projected O(3) states rapidly approach orthogonality 
as the SU(3) highest weight labels are increased (Draayer er a1 1968, Elliott 1958, 
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Elliott and Harvey 1962). A related approach has been considered by Biedenharn and 
co-authors (Louck and Biedenharn 1972, Lohe et al 1977, 1983) for the U ( n )  tensor 
operator problem, who consider the behaviour of certain coupling coefficients in various 
limits. 

It was shown in I that the overlap coefficients between the projected states are 
reasonably well behaved since they determine rational polynomial functions on the 
dual of the Cartan subalgebra. This property is particularly convenient for discussing 
the asymptotic behaviour of the projected states in a suitable limit of large quantum 
numbers. It shall be demonstrated that asymptotically the projected states for the 
Clebsch-Gordan problem approach the intrinsic states from which projection is done. 
In particular the solution to the Clebsch-Gordan problem, as proposed in I and 11, 
is asymptotically orthogonal. 

2. Preliminaries 

Throughout we adopt the notation and conventions of I and 11. We assume that L is 
a semisimple Lie algebra of rank 1 with universal enveloping algebra U and H is a 
fixed Cartan subalgebra (CSA) of L. We let V(A) be a fixed (but arbitrary) finite- 
dimensional irreducible U module with highest weight A E A+. We let A ] ,  . . . , A, denote 
the distinct weights occurring in V(A) with multiplicities n, ,  . . . , n, resp. We assume 
that the weights are in non-decreasing order with respect to the usual partial ordering > 
induced on the weights by the positive roots (Humphreys 1972): i.e. if A,  > A, then 
i > j. With this convention we have A, = A, the highest weight of V(A), and A ,  = - A *  
( A *  the highest weight of the dual module V(A)*) which is the lowest weight in V(A). 
For each i ( = l ,  . . . , m )  we let V , ( A )  denote the space of weight vectors of weight A,. 
We clearly have n, = dim V , ( A ) .  

Now let V(p)  be an arbitrary finite-dimensional irreducible U module with highest 
weight p E A+. Then the Clebsch-Gordan (CG) reduction of the tensor product module 
V(A)O V ( p )  may be formally written ( I ,  11) 

m 

V ( A ) O V ( p ) =  0 m ( p + A , :  A O p ) V ( p + A h , )  p + A ,  E A+ 
, = I  

where the multiplicities are given by 

m ( p + A , :  A O p ) = d i m  V,, , (A) 

where 

v , , ( h ) = { u ~  V , ( A ) ~ X , " + ~ , ~ J ' ~ = O ; ~ = ~  , . . . ,  I } .  

In particular the multiplicities (possibly zero) must satisfy 

O s m ( p + A , :  A O p ) s n i .  

Nowlet{e, , l j=l ,  . . . ,  m(p+A, :AOp.)}beabas is for thespace  V, , , (A)of( l )and 
let e: denote the maximal weight vector of V ( p ) .  From I and I1 we know that a full 
set of independent maximal weight states of weight p + A ,  is given by the vectors 

PI 1 e, J 0 e?) j = l , . .  . , m ( p + + , :  A O p )  (2) 
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where Pi is the (central) projection onto submodules V ( p  + A , ) .  This method of solution 
to the CG state labelling problem, which has been discussed in detail in I and  11, suffers 
from the drawback that the states (2) are not generally orthogonal, i.e. the overlap 
coefficients 

(e i ,  o e? I P, I o e:) k # j  

are not generally zero. Nevertheless the overlap coefficients are relatively well behaved 
as can be seen from the following result derived in I. 

Theorem 1 .  Let { e ~ } ~ ~ l  be a basis for the weight space V,(A). Then the overlap 
coefficients 

(e ;Oe,” lP, le ;Oe,”)  k, j = 1,  . . . , n, (3) 

determine functions of p E A+ which may be extended uniquely to rational polynomial 
functions on all of H*. 

This rational polynomial function property of the overlap coefficients is useful and  
in particular indicates that it may be possible to evaluate them analytically. Moreover 
it was noted in paper I that the rational polynomial functions (3) are uniquely 
determined by their values in the full multiplicity region which considerably simplifies 
the task of evaluation. It is our aim in this paper to investigate the asymptotic behaviour 
of these rational polynomial functions in the large quantum number limit (p ,  cy,) + 00 

( i  = 1,. . . , I ) .  
Following Kostant (1975) we say that A is subordinate to p if ~ + A , E  

h + ( i =  1 , .  . . , m).  In such a case all irreducible modules V ( p  + A , )  occur in V(A)O 
V ( w )  with full multiplicity m ( p  + A , :  A 0 p )  = n,. It is convenient to introduce positive 
integers d, (  i = 1 ,  . . . , I )  defined to be smallest with respect to the property 

xp’+’” = 0 Vu E V(A). 

The integers d, have been determined by Kostant (1959) and Fiengold (1978). It 
follows, in view of ( l ) ,  that A is subordinate to p if and only if 

(p ,  cy,) 2= dl i =  1,. . . , I. (4) 

The set of weights p E A+ satisfying the inequalities (4) constitute the full multiplicity 
region in A+. 

The tensor product module V(A)O V ( p )  is known (Gould and Edwards 1984) to 
be cyclically generated by the vector e!Oe,” where e? (resp e,”) is the minimal (resp 
maximal) weight vector of V(A) (resp V ( p ) ) .  We conclude this section with the 
following result (Gould and  Edwards 1984) on finite-dimensional cyclic modules. 

Theorem 2. Let V = Uu” be a finite-dimensional cyclic module generated by a vector 
of weight p E A.  Set V‘O’ = U ( B ) u ”  and let Ti’) denote the set of distinct weights in 
V‘’). For Y E  T ‘ O )  let mo( v )  denote the multiplicity of the weight Y in V‘’’. Suppose 

V =  0 V(A) 
h 

is the decomposition of V into irreducible submodules. Then the following hold. 

Ai. In particular A = p or  A > p. 
(a )  The highest weights occurring in the decomposition (5) are of the form A E do) n 
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(b) The irreducible module V(A) occurs in V with multiplicity m,(A) < m,(A).  In 

(c) mu(@) = 1 if and only if u p  & Zi=, Uxiup.  
particular m , ( p )  < 1. 

Remarks. We note that in the above theorem we have adopted the notation of Gould 
and Edwards (1984) where B denotes the nilpotent subalgebra of L generated by the 
raising generators x, E L, corresponding to positive roots a E a+, and U(B) is the 
universal enveloping algebra of B. 

3. The large quantum number limit 

In this section we investigate the CG problem for the tensor product module V(A)@ 
V ( p )  in the asymptotic limit, i.e. we assume (p,  a i )  >> l(i = 1,. . . , I ) .  We find it con- 
venient to introduce a small parameter e a 0  of the same order as the numbers 
l/(p, ai ) ( i  = 1,. . . , I ) .  Explicitly we may define E according to 

E = max Ei  = 1/(~, ai) i =  1, .  . . , 1. 
i 

Then for a E arbitrary, we have that l/(p, a) is of order E ( O ( E ) ) .  
For such large g E A+ we are considering we may assume that A is subordinate to 

I.L (i.e. p satisfies the inequalities of (4)) and hence all irreducible modules V ( p  + A i )  
( i  = 1,.  . . , m )  occur in V(A)O V ( p )  with full multiplicity n,. We may thus write 

We denote the (central) projection onto the primary submodule n , V ( p + A , )  by PI. 
Now let {eJ};Ll constitute an orthonormal basis for the weight space V , ( A ) .  Then it 
follows from § 2 (see I and 11) that the vectors 

(7)  P, I el 0 e +') j = 1, . . . , n, 
constitute a full set of (non-orthogonal) highest weight states of weight p + A,. It is 
our aim here to demonstrate that the states (7) are orthogonal to first order in E.  

We note that the projection operator PI may be regarded as a D [ A ] x D [ A ]  
( D [ A ]  = dim V(A)) matrix of operators with entries 

(ef IP,~:)E End V ( P )  

( e ;  I( e,?[ P, I e:)[ e;;.) = ( e3 0 e E I P, I e: 0 e:) 
defined by 

where e : ,  e ;  are arbitrary vectors in V ( p ) .  We define the A trace of P, according to 

We have the following result. 

Lemma 1 .  
(a) Pile;@ e:) = 0 for k > i, J = 1, . . . ,, nk. 
(b) 7,+(Pi) reduces to a scalar multiple ki of the identity on V ( p ) .  We have 

ti= n i D [ p + A i ] / D [ p ] =  ni+O(&) .  
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Proof: 
(a) For k = 1 , .  . . , m we have 

m 

U( B)le,kO e:) = [U( B)e,k] 0 e,” c @ VI( A ) 0 e? 
I =  k 

where the last inclusion follows from the assumption that the weights A, ,  . . . , A, are 
in non-decreasing order. Hence it follows from theorem 2(a) that the highest weights 
occurring in the cyclic module generated by e,kOe: are of the form p + A l ( l a  k ) .  In 
particular if i < k it follows that the irreducible module V ( p  + A l )  cannot occur in 
U/e,kOe:).  This is enough to prove 

P, I e,k o e?) = 0 for i < k  

as required. 
As to (b) note that PI intertwines the action of L, namely 

[ T A  (x )  @ 1 + 1 8 T p  (x)]  = PI [ T A  (x )  @ 1 + 1 @ T+ (x) ]  

[ T.4 (XI 0 1, PI 1 = [PI, 1 0  T p  (XI]. 

[ ~ A ( p t ) ,  r p ( x ) I =  ~ A [ r A ( x ) @ l ,  p t I = O  

x E L. 

Rearranging we may thus write 

Taking the A trace of both sides of this equation we obtain, from the properties of trace, 

X E  L. 

Thus, from Schur’s lemma, TA ( P I )  reduces to a scalar multiple 

immediately 

of the identity on V ( p ) .  
Now let 7 ~ 0 ~  denote the total trace of PI on the space V(A)O V ( p ) .  We have 

T A O p ( p ~ ) =  ntD[p+A~l* (8) 

On the other hand the total trace is related to the partial traces TA, T~ with respect to 
the spaces V(A) and V ( p )  respectively according to 

= T ~ [ T A ( p # ) ]  = ,$rD[pl* 

Comparing with (8) we thus obtain 

6 = n , ( D [ p  + A 1 1 / D [ p * . )  

as required. Finally using Weyl’s dimension formula (Humphreys 1972) we may write 

We are now in a position to prove our main result. 

Theorem 3. 
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Proof: We proceed by recursion on  i (  = 1, . . . , m )  starting with i = 1. For this case we 
have n, = 1 and  e :  is the (unique) minimal weight vector of V ( h ) .  Then we have from 
lemma l ( b )  

(e?17A(P,)le?)=C (e,"@e?lP,le,"Oe?) 
kl 

However, from lemma l ( a )  we have P,le,"@ e?) = 0 for k > 1 whence 

(e:@ e?lP, (e :Oe?)  = (e?lTA(Pl)le?) = 1 + o ( E ) .  

Thus we must have 

(e? o e ? j pll e," O e?) = 8 k  81 k8] I + O( E )  

which proves the result for i = 1. 

By the recursion hypothesis we have 
Proceeding recursively assume the result holds for i. We prove the result for P,,,. 

( e :8e? lPk(e :Oe?)  = 1 + o ( E )  f o r k s  i 

which is equivalent to writing 

I e," o e ?) = Pk I e," o e?) + (YO 

where w is a normalised vector in V ( h ) O  V ( p )  and (Y is of order E.  Thua we have, 
for k s  i, 

P,+,le:Oe?) = ~ P , + , w  

(uIPl+lle,"OeY)= O ( E )  V k <  i (10) 

which implies 

where U is an  arbitrary normalised vector in V ( A ) O  V ( p ) .  We already know from 
lemma 1( a) that 

for k < i + 1. P,+lle:Oe$)=O 
Thus to prove our result it remains to demonstrate 
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By lemma l(a) the third term on the RHS above vanishes and the second term, by (lo),  
is of order E. Thus we must have 

? + I  

( e l + ' O e ~ l P ~ + l l e J + ' O e ? ) =  n,+,+O(E). 
J = 1  

However, since PI+,  is a projection, we must have 

0s ( e ~ + l O e Y I P l + l ~ e ~ + 1 0  e?) s 1 

which implies that 

(e:+'Oe?lP,+,lej+'Oe?)= 1 + o ( E )  j = 1 , .  . . , n,,,. 
Thus we may write 

Pz+l /e f+lOe?)=  /e:+'Oe?)+crw 

where w E V ( h ) O  V ( p )  is normalised and a is of order E. This is enough to establish 
(11) as required, which proves the final result by (finite) recursion. 

The above result demonstrates that the projected states of (7) are approximated 
(in the sense of least squares) by the states /e;Oe?) to order E.  In particular the states 
(7 )  approach orthogonality in the limit of large quantum numbers. This asymptotic 
orthogonality is clearly analogous to the asymptotic orthogonality satisfied by Elliot's 
well known solution (Draayer et a1 1968, Elliott 1958, Elliott and Harvey 1962) to the 
U(3) 2 O(3) state labelling problem. 

In terms of overlap coefficients, we let f l , k (p ) (  j ,  k = 1, .  . . , n z )  denote the rational 
polynomial functions on H* determined by the overlap coefficients 

f i . k (p )  = (e:OeYlP,Ie;OeY) p E A+. 

lim = 'kJ r =  1, .  . . , 1 (12) 

From theorem (3) we have the limit property 

(P,e,)'= 

provided the limit is taken in A+ which is equivalent to taking the limit in A (the set 
of integral linear functions on H*). However, A is Zariski dense in H* and polynomial 
functions are continuous in the Zariski topology on H* (Humphreys 1972). By 
continuity it follows therefore, since &( p )  determines a rational polynomial function, 
that the limit (12) holds in H" (and not just A+) .  In conclusion we note that the limit 
(12) is well defined since it is independent of how the limit is reached. 
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